Accurate Object Detection with Location Relaxation and Regionlets Re-localization
نویسندگان
چکیده
Standard sliding window based object detection requires dense classifier evaluation on densely sampled locations in scale space in order to achieve an accurate localization. To avoid such dense evaluation, selective search based algorithms only evaluate the classifier on a small subset of object proposals. Notwithstanding the demonstrated success, object proposals do not guarantee perfect overlap with the object, leading to a suboptimal detection accuracy. To address this issue, we propose to first relax the dense sampling of the scale space with coarse object proposals generated from bottom-up segmentations. Based on detection results on these proposals, we then conduct a top-down search to more precisely localize the object using supervised descent. This twostage detection strategy, dubbed location relaxation, is able to localize the object in the continuous parameter space. Furthermore, there is a conflict between accurate object detection and robust object detection. That is because the achievement of the later requires the accommodation of inaccurate and perturbed object locations in the training phase. To address this conflict, we leverage the rich spatial information learned from the Regionlets detection framework to determine where the object is precisely localized. Our proposed approaches are extensively validated on the PASCAL VOC 2007 dataset and a self-collected large scale car dataset. Our method boosts the mean average precision of the current state-of-the-art (41.7%) to 44.1% on PASCAL VOC 2007 dataset. To our best knowledge, it is the best performance reported without using outside data (Convolutional neural network based approaches are commonly pre-trained on a large scale outside dataset and fine-tuned on the
منابع مشابه
Generic Object Detection with Dense Neural Patterns and Regionlets
This paper addresses the challenge of establishing a bridge between deep convolutional neural networks and conventional object detection frameworks for accurate and efficient generic object detection. We introduce Dense Neural Patterns, short for DNPs, which are dense local features derived from discriminatively trained deep convolutional neural networks. DNPs can be easily plugged into convent...
متن کاملDeep Regionlets for Object Detection
In this paper, we propose a novel object detection framework named "Deep Regionlets" by establishing a bridge between deep neural networks and conventional detection schema for accurate generic object detection. Motivated by the advantages of regionlets on modeling object deformation and multiple aspect ratios, we incorporate regionlet into an end-to-end trainable deep learning framework. The d...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملLow Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring
In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...
متن کامل